Ai1 Seq2seq Model (Sequence to Sequence Model) 개요 이번 포스팅에서는 Sequence to Sequence (Seq2seq) Model에 대해서 알아보겠습니다. Seq2seq 모형은 LSTM(또는 GRU) 기반 모형으로 고정된 길이의 sequence를 입력받아, 입력 sequence에 알맞은 길이의 sequence를 출력해주는 모형으로 2014, Google et. al에 최초 제안되었습니다. 왜? Deep Neural Networks (DNNs)은 다양한 분야에서 좋은 성과를 거두어 왔습니다. 다만 DNNs은 고정된 차원의 feature와 고정된 차원의 출력에 특화된 방법입니다. 그래서 입력과 출력의 길이가 그때 그때 다른 데이터를 학습하고, 이를 응용하는 문제에는 적합하지 않습니다. 대표적으로 기계 번역 문제를 생각할 수 있습니다. 기계 번역은 .. 2020. 4. 20. 이전 1 다음